Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 793
Filter
1.
Postgrad Med J ; 96(1137): 403-407, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-20245306

ABSTRACT

This article reviews the correlation between ACE2 and COVID-19 and the resulting acute respiratory distress syndrome (ARDS). ACE2 is a crucial component of the renin-angiotensin system (RAS). The classical ACE-angiotensin Ⅱ (Ang II)-angiotensin type 1 receptor (AT1R) axis and the ACE2-Ang(1-7)-Mas counter-regulatory axis play an essential role in RAS system. ACE2 antagonises the activation of the classical RAS ACE-Ang II-AT1R axis and protects against lung injury. Similar to severe acute respiratory syndrome-related coronavirus, 2019 novel coronavirus (2019-nCoV) also uses ACE2 for cell entry. ARDS is a clinical high-mortality disease which is probably due to the excessive activation of RAS caused by 2019-nCoV infection, and ACE2 has a protective effect on ARDS caused by COVID-19. Because of these protective effects of ACE2 on ARDS, the development of drugs enhancing ACE2 activity may become one of the most promising approaches for the treatment of COVID-19 in the near future. In the meantime, however, the use of RAS blockers such as ACE inhibitors and angiotensin II receptor blockers that inhibit the damaging (ACE-Ang II) arm of the RAS cascade in the lung may also be promising. Trial registration number: NCT04287686.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/physiopathology , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/physiopathology , Receptors, Virus/metabolism , Respiratory Distress Syndrome/physiopathology , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme 2 , Betacoronavirus/drug effects , COVID-19 , Coronavirus Infections/drug therapy , Humans , Pandemics , Pneumonia, Viral/drug therapy , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/virology , SARS-CoV-2
3.
Viruses ; 15(5)2023 04 25.
Article in English | MEDLINE | ID: covidwho-20234853

ABSTRACT

The benefits of SARS-CoV-2 spike mRNA vaccines are well known, including a significant decline in COVID-19 morbidity and a decrease in the mortality rate of SARS-CoV-2 infected persons. However, pharmacovigilance studies have revealed the existence of rare cases of cardiovascular complications after mass vaccination using such formulations. Cases of high blood pressure have also been reported but were rarely documented under perfectly controlled medical supervision. The press release of these warning signals triggered a huge debate over COVID-19 vaccines' safety. Thereby, our attention was quickly focused on issues involving the risk of myocarditis, acute coronary syndrome, hypertension and thrombosis. Rare cases of undesirable post-vaccine pathophysiological phenomena should question us, especially when they occur in young subjects. They are more likely to occur with inappropriate use of mRNA vaccine (e.g., at the time when the immune response is already very active during a low-noise infection in the process of healing), leading to angiotensin II (Ang II) induced inflammation triggering tissue damage. Such harmful effects observed after the COVID-19 vaccine evoke a possible molecular mimicry of the viral spike transiently dysregulating angiotensin converting enzyme 2 (ACE2) function. Although the benefit/risk ratio of SARS-CoV-2 spike mRNA vaccine is very favorable, it seems reasonable to suggest medical surveillance to patients with a history of cardiovascular diseases who receive the COVID-19 vaccine.


Subject(s)
Blood Coagulation Disorders , COVID-19 , Hypertension , Humans , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Renin-Angiotensin System/physiology , Peptidyl-Dipeptidase A/metabolism , Molecular Mimicry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
4.
Sci Rep ; 13(1): 8324, 2023 05 23.
Article in English | MEDLINE | ID: covidwho-20234346

ABSTRACT

Radiation pneumonitis (RP) affects both patients and physicians during radiation therapy for lung cancer. To date, there are no effective drugs for improving the clinical outcomes of RP. The activation of angiotensin-converting enzyme 2 (ACE2) improves experimental acute lung injury caused by severe acute respiratory syndrome coronavirus, acid inhalation, and sepsis. However, the effects and underlying mechanisms of ACE2 in RP remain unclear. Therefore, this study aimed to investigate the effects of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers on RP and ACE2/angiotensin-(1-7)/Mas receptor pathway activation. We found that radiotherapy decreased the expression of ACE2 and that overexpression of ACE2 alleviated lung injury in an RP mouse model. Moreover, captopril and valsartan restored ACE2 activation; attenuated P38, ERK, and p65 phosphorylation; and effectively mitigated RP in the mouse model. Further systematic retrospective analysis illustrated that the incidence of RP in patients using renin-angiotensin system inhibitors (RASis) was lower than that in patients not using RASis (18.2% vs. 35.8% at 3 months, p = 0.0497). In conclusion, the current findings demonstrate that ACE2 plays a critical role in RP and suggest that RASis may be useful potential therapeutic drugs for RP.


Subject(s)
Acute Lung Injury , Radiation Pneumonitis , Animals , Mice , NF-kappa B , Peptidyl-Dipeptidase A , Angiotensin-Converting Enzyme 2 , Renin-Angiotensin System , Retrospective Studies , Antihypertensive Agents , Enzyme Inhibitors
5.
Arch Cardiol Mex ; 91(Suplemento COVID): 086-094, 2021 Dec 20.
Article in Spanish | MEDLINE | ID: covidwho-2313261

ABSTRACT

Currently, myocardial injury has been reported in patients hospitalized with coronavirus disease 2019 (COVID-19). The studies also show a correlation between cardiac events and severe forms of the disease. COVID-19 begins with an early infection phase in which the virus infiltrates the lung parenchyma and proliferates. It then progresses to the pulmonary phase, where the initial inflammatory process, characterized by vasodilation, vascular permeability, and leukocyte recruitment, leads to lung damage, hypoxemia, and cardiovascular stress. The renin angiotensin aldosterone system is important in the pathophysiology of severe acute respiratory syndrome coronavirus 2 infection and in the propagation of systemic inflammation. Within this system, the pathway mediated by angiotensin-converting enzyme 2 (ACE2) produces vasodilation, cardioprotection, anti-oxidation, and anti-inflammation. Furthermore, the free form of ECA2 prevents binding of the virus to host cells and reduces its damage to the lung.


Actualmente, se ha reportado injuria miocárdica en pacientes hospitalizados por enfermedad por coronavirus 2019 (COVID-19). Los estudios, además, demuestran una correlación entre los eventos cardiacos y formas severas de la enfermedad. La COVID-19 comienza con una fase de infección temprana en la que el virus infiltra el parénquima pulmonar y prolifera. Luego progresa a la fase pulmonar, donde el proceso inflamatorio inicial, caracterizado por vasodilatación, permeabilidad vascular y reclutamiento de leucocitos, lleva a daño pulmonar, hipoxemia y estrés cardiovascular. El sistema renina angiotensina aldosterona es importante en la fisiopatología de la infección por el coronavirus 2 del síndrome respiratorio agudo grave y en la propagación de la inflamación sistémica. Dentro de este sistema, la vía mediada por la enzima convertidora de angiotensina 2 (ECA2) produce vasodilatación, cardioprotección, antioxidación y antiinflamación. Además, la forma libre de la ECA2 previene la unión del virus a las células huésped y reduce su daño al pulmón.


Subject(s)
COVID-19 , Cardiovascular System , Heart Diseases/virology , Angiotensin-Converting Enzyme 2 , COVID-19/complications , COVID-19/physiopathology , Cardiovascular System/virology , Humans , Lung/virology , Renin-Angiotensin System
6.
Circ Res ; 132(10): 1320-1337, 2023 05 12.
Article in English | MEDLINE | ID: covidwho-2313536

ABSTRACT

The current epidemic of corona virus disease (COVID-19) has resulted in an immense health burden that became the third leading cause of death and potentially contributed to a decline in life expectancy in the United States. The severe acute respiratory syndrome-related coronavirus-2 binds to the surface-bound peptidase angiotensin-converting enzyme 2 (ACE2, EC 3.4.17.23) leading to tissue infection and viral replication. ACE2 is an important enzymatic component of the renin-angiotensin system (RAS) expressed in the lung and other organs. The peptidase regulates the levels of the peptide hormones Ang II and Ang-(1-7), which have distinct and opposing actions to one another, as well as other cardiovascular peptides. A potential consequence of severe acute respiratory syndrome-related coronavirus-2 infection is reduced ACE2 activity by internalization of the viral-ACE2 complex and subsequent activation of the RAS (higher ratio of Ang II:Ang-[1-7]) that may exacerbate the acute inflammatory events in COVID-19 patients and possibly contribute to the effects of long COVID-19. Moreover, COVID-19 patients present with an array of autoantibodies to various components of the RAS including the peptide Ang II, the enzyme ACE2, and the AT1 AT2 and Mas receptors. Greater disease severity is also evident in male COVID-19 patients, which may reflect underlying sex differences in the regulation of the 2 distinct functional arms of the RAS. The current review provides a critical evaluation of the evidence for an activated RAS in COVID-19 subjects and whether this system contributes to the greater severity of severe acute respiratory syndrome-related coronavirus-2 infection in males as compared with females.


Subject(s)
COVID-19 , Renin-Angiotensin System , Humans , Male , Female , Renin-Angiotensin System/physiology , Angiotensin-Converting Enzyme 2/metabolism , Peptidyl-Dipeptidase A/physiology , SARS-CoV-2 , Sex Characteristics , Post-Acute COVID-19 Syndrome , Angiotensin-Converting Enzyme Inhibitors/pharmacology
7.
Front Immunol ; 13: 963357, 2022.
Article in English | MEDLINE | ID: covidwho-2317681

ABSTRACT

The ACE2 receptors essential for SARS-CoV-2 infections are expressed not only in the lung but also in many other tissues in the human body. To better understand the disease mechanisms and progression, it is essential to understand how the virus affects and alters molecular pathways in the different affected tissues. In this study, we mapped the proteomics data obtained from Nie X. et al. (2021) to the pathway models of the COVID-19 Disease Map project and WikiPathways. The differences in pathway activities between COVID-19 and non-COVID-19 patients were calculated using the Wilcoxon test. As a result, 46% (5,235) of the detected proteins were found to be present in at least one pathway. Only a few pathways were altered in multiple tissues. As an example, the Kinin-Kallikrein pathway, an important inflammation regulatory pathway, was found to be less active in the lung, spleen, testis, and thyroid. We can confirm previously reported changes in COVID-19 patients such as the change in cholesterol, linolenic acid, and arachidonic acid metabolism, complement, and coagulation pathways in most tissues. Of all the tissues, we found the thyroid to be the organ with the most changed pathways. In this tissue, lipid pathways, energy pathways, and many COVID-19 specific pathways such as RAS and bradykinin pathways, thrombosis, and anticoagulation have altered activities in COVID-19 patients. Concluding, our results highlight the systemic nature of COVID-19 and the effect on other tissues besides the lung.


Subject(s)
COVID-19 , Angiotensin-Converting Enzyme 2 , Anticoagulants , Arachidonic Acid , Bradykinin/metabolism , Humans , Kallikreins/metabolism , Male , Peptidyl-Dipeptidase A/metabolism , Renin-Angiotensin System , Retrospective Studies , SARS-CoV-2 , alpha-Linolenic Acid
8.
J Cardiovasc Med (Hagerstown) ; 24(Suppl 1): e15-e23, 2023 04 01.
Article in English | MEDLINE | ID: covidwho-2300416

ABSTRACT

The coronavirus disease 19 (COVID-19), due to coronavirus 2 (SARS-CoV-2) infection, presents with an extremely heterogeneous spectrum of symptoms and signs. COVID-19 susceptibility and mortality show a significant sex imbalance, with men being more prone to infection and showing a higher rate of hospitalization and mortality than women. In particular, cardiovascular diseases (preexistent or arising upon infection) play a central role in COVID-19 outcomes, differently in men and women. This review will discuss the potential mechanisms accounting for sex/gender influence in vulnerability to COVID-19. Such variability can be ascribed to both sex-related biological factors and sex-related behavioural traits. Sex differences in cardiovascular disease and COVID-19 involve the endothelial dysfunction, the innate immune system and the renin-angiotensin system (RAS). Furthermore, the angiotensin-converting enzyme 2 (ACE2) is involved in disease pathogenesis in cardiovascular disease and COVID-19 and it shows hormone-dependent actions. The incidence of myocardial injury during COVID-19 is sex-dependent, predominantly in association with a greater degree of inflammation and coagulation disorders among men. Its pathogenesis is not fully elucidated, but the main theories foresee a direct role for the ACE2 receptor, the hyperimmune response and the RAS imbalance, which may also lead to isolated presentation of COVID-19-mediated myopericarditis. Moreover, the latest evidence on cardiovascular diseases and their relationship with COVID-19 during pregnancy will be discussed. Finally, authors will analyse the prevalence of the long-covid syndrome between the two sexes and its impact on the quality of life and cardiovascular health.


Subject(s)
COVID-19 , Cardiology , Cardiovascular Diseases , Female , Humans , Male , COVID-19/complications , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/complications , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2 , Post-Acute COVID-19 Syndrome , Quality of Life , Peptidyl-Dipeptidase A/metabolism , Renin-Angiotensin System/physiology
9.
JAAPA ; 36(5): 28-33, 2023 May 01.
Article in English | MEDLINE | ID: covidwho-2299247

ABSTRACT

ABSTRACT: This article describes drugs used in primary care that could alter patients' risk for and severity of COVID-19. The risks and benefits of each drug class were differentiated according to the strength of evidence from 58 selected randomized controlled trials, systematic reviews, and meta-analyses. Most of the studies reported on drugs affecting the renin-angiotensin-aldosterone system. Other classes included opioids, acid suppressants, nonsteroidal anti-inflammatory drugs, corticosteroids, vitamins, biguanides, and statins. Current evidence has not fully differentiated drugs that may increase risk versus benefits in COVID-19 infection. Further studies are needed in this area.


Subject(s)
COVID-19 , Humans , Renin-Angiotensin System , Adrenal Cortex Hormones/adverse effects , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Primary Health Care
11.
JAMA ; 329(14): 1183-1196, 2023 04 11.
Article in English | MEDLINE | ID: covidwho-2298507

ABSTRACT

IMPORTANCE: Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective: To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS: In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non-critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS: Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES: The primary outcome was organ support-free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS: On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support-free days among critically ill patients was 10 (-1 to 16) in the ACE inhibitor group (n = 231), 8 (-1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support-free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE: In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02735707.


Subject(s)
Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , COVID-19 Drug Treatment , COVID-19 , Renin-Angiotensin System , Female , Humans , Male , Middle Aged , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Bayes Theorem , COVID-19/therapy , Renin-Angiotensin System/drug effects , Hospitalization , COVID-19 Drug Treatment/methods , Critical Illness , Receptors, Chemokine/antagonists & inhibitors
12.
Curr Microbiol ; 80(6): 194, 2023 Apr 27.
Article in English | MEDLINE | ID: covidwho-2303884

ABSTRACT

Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) is an emerging zoonotic virus, which causes Coronavirus Disease 2019 (COVID-19). Entry of coronaviruses into the cell depends on binding of the viral spike (S) proteins to cellular receptors Angiotensin-converting enzyme 2 (ACE2). The virus-mediated reduction of ACE2/Ang1-7 causes flooding of inflammatory cytokines. A similar scenario of hyper immunologic reaction has been witnessed in the context of Intestinal Inflammatory Diseases (IIDs) with the deregulation of ACE2. This review summarizes several IIDs that lead to such susceptible conditions. It discusses suitable mechanisms of how ACE2, being a crucial regulator of the Renin-Angiotensin System (RAS) signaling pathway, can affect the physiology of intestine as well as lungs, the primary site of SARS-CoV-2 infection. ACE2, as a SARS-CoV-2 receptor, establishes a critical link between COVID-19 and IIDs. Intercessional studies targeting the RAS signaling pathway in patients may provide a novel strategy for addressing the COVID-19 crisis. Hence, the modulation of these key RAS pathway members can be beneficial in both instances. However, it's difficult to say how beneficial are the ACE inhibitors (ACEI)/ Angiotensin II type-1 receptor blockers (ARBs) during COVID-19. As a result, much more research is needed to better understand the relationship between the RAS and SARS-CoV-2 infection.


Subject(s)
COVID-19 , Humans , Renin-Angiotensin System/physiology , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin Receptor Antagonists/therapeutic use , Drug Repositioning , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Peptidyl-Dipeptidase A/metabolism , Inflammation/drug therapy
13.
Arq Bras Cardiol ; 120(4): e20220277, 2023 03.
Article in English, Portuguese | MEDLINE | ID: covidwho-2303494

ABSTRACT

BACKGROUND: Angiotensin receptor blockers (ARB) and angiotensin-converting enzyme inhibitors (ACEI) increase the expression of ACE2, which is a receptor for entry of SARS-CoV-2 into cells. Though evidence suggests that ARB/ACEI are safe among the general population with COVID-19, their safety in patients with overweight/obesity-related hypertension deserves further evaluation. OBJECTIVE: We assessed the association between ARB/ACEI use and COVID-19 severity in patients with overweight/obesity-related hypertension. METHODS: This study included 439 adult patients with overweight/obesity (body mass index ≥ 25 kg/m2) and hypertension, diagnosed with COVID-19 and admitted to University of Iowa Hospitals and Clinic from March 1 to December 7, 2020. Mortality and severity of COVID-19 were evaluated based on length of stay in hospital, intensive care unit admission, use of supplemental oxygen, mechanical ventilation, and vasopressors. Multivariable logistic regression was used to examine the associations of ARB/ACEI use with mortality and other markers of COVID-19 severity, with a two-sided alpha set at 0.05. RESULTS: Exposure to ARB (n = 91) and ACEI (n = 149) before hospitalization was significantly associated with lower mortality (odds ratio [OR] = 0.362, 95% confidence interval [CI] 0.149 to 0.880, p = 0.025) and a shorter length of stay (95% CI -0.217 to -0.025, p = 0.015). Additionally, patients using ARB/ACEI showed a non-significant trend toward lower intensive care unit admission (OR = 0.727, 95% CI 0.485 to 1.090, p = 0.123), use of supplemental oxygen (OR = 0.929, 95% CI 0.608 to 1.421, p = 0.734), mechanical ventilation (OR = 0.728, 95% CI 0.457 to 1.161, p = 0.182), and vasopressors (OR = 0.677, 95% CI 0.430 to 1.067, p = 0.093). CONCLUSION: Results suggest that hospitalized patients with COVID-19 and overweight/obesity-related hypertension who were prescribed ARB/ACEI before admission to the hospital exhibit lower mortality and less severe COVID-19 than those who were not taking ARB/ACEI. The results also suggest that exposure to ARB/ACEI may protect patients with overweight/obesity-related hypertension from severe COVID-19 and death.


FUNDAMENTO: Os bloqueadores dos receptores da angiotensina (BRA) e os inibidores da enzima conversora da angiotensina (IECA) aumentam a expressão de ACE2, que é um receptor para entrada de SARS-CoV-2 nas células. Embora as evidências sugiram que os IECA/BRA são seguros entre a população geral com COVID-19, sua segurança em pacientes com hipertensão relacionada ao sobrepeso/obesidade merece uma avaliação mais aprofundada. OBJETIVO: Avaliamos a associação entre o uso de IECA/BRA e a gravidade da COVID-19 em pacientes com hipertensão relacionada ao sobrepeso/obesidade. MÉTODOS: O presente estudo incluiu 439 pacientes adultos com sobrepeso/obesidade (índice de massa corporal ≥ 25 kg/m2) e hipertensão, diagnosticados com COVID-19 e internados no University of Iowa Hospitals and Clinic entre 1º de março e 7 de dezembro de 2020. Foram avaliadas a mortalidade e a gravidade da COVID-19 com base no tempo de internação hospitalar, internação em unidade de terapia intensiva, uso de oxigênio suplementar, ventilação mecânica e uso de vasopressores. A regressão logística multivariável foi usada para examinar as associações do uso de IECA/BRA com a mortalidade e outros marcadores de gravidade de COVID-19, com um alfa bilateral definido em 0,05. RESULTADOS: A exposição aos BRA (n = 91) e IECA (n = 149) antes da hospitalização foi significativamente associada a menor mortalidade ( odds ratio [OR] = 0,362, intervalo de confiança [IC] de 95% 0,149 a 0,880, p = 0,025) e menor tempo de internação hospitalar (IC 95% −0,217 a −0,025, p = 0,015). Adicionalmente, os pacientes em uso de IECA/BRA apresentaram uma tendência não significativa de menor internação em unidade de terapia intensiva (OR = 0,727, IC 95% 0,485 a 1,090, p = 0,123), uso de oxigênio suplementar (OR = 0,929, IC 95% 0,608 a 1,421,p = 0,734), ventilação mecânica (OR = 0,728, IC 95% 0,457 a 1,161, p = 0,182) e vasopressores (OR = 0,677, IC 95% 0,430 a 1,067, p = 0,093). CONCLUSÃO: Os resultados sugerem que pacientes internados com COVID-19 e hipertensão relacionada ao sobrepeso/obesidade que receberam IECA/BRA antes da internação apresentam menor mortalidade e COVID-19 menos grave do que aqueles que não estavam tomando IECA/BRA. Os resultados também sugerem que a exposição aos IECA/BRA pode proteger pacientes com hipertensão relacionada ao sobrepeso/obesidade de COVID-19 grave e morte.


Subject(s)
COVID-19 , Hypertension , Adult , Humans , COVID-19/complications , SARS-CoV-2 , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Retrospective Studies , Renin-Angiotensin System , Angiotensin Receptor Antagonists/therapeutic use , Overweight/complications , Hypertension/drug therapy , Hypertension/complications , Obesity/complications , Oxygen
14.
JAMA ; 329(14): 1170-1182, 2023 04 11.
Article in English | MEDLINE | ID: covidwho-2303367

ABSTRACT

Importance: Preclinical models suggest dysregulation of the renin-angiotensin system (RAS) caused by SARS-CoV-2 infection may increase the relative activity of angiotensin II compared with angiotensin (1-7) and may be an important contributor to COVID-19 pathophysiology. Objective: To evaluate the efficacy and safety of RAS modulation using 2 investigational RAS agents, TXA-127 (synthetic angiotensin [1-7]) and TRV-027 (an angiotensin II type 1 receptor-biased ligand), that are hypothesized to potentiate the action of angiotensin (1-7) and mitigate the action of the angiotensin II. Design, Setting, and Participants: Two randomized clinical trials including adults hospitalized with acute COVID-19 and new-onset hypoxemia were conducted at 35 sites in the US between July 22, 2021, and April 20, 2022; last follow-up visit: July 26, 2022. Interventions: A 0.5-mg/kg intravenous infusion of TXA-127 once daily for 5 days or placebo. A 12-mg/h continuous intravenous infusion of TRV-027 for 5 days or placebo. Main Outcomes and Measures: The primary outcome was oxygen-free days, an ordinal outcome that classifies a patient's status at day 28 based on mortality and duration of supplemental oxygen use; an adjusted odds ratio (OR) greater than 1.0 indicated superiority of the RAS agent vs placebo. A key secondary outcome was 28-day all-cause mortality. Safety outcomes included allergic reaction, new kidney replacement therapy, and hypotension. Results: Both trials met prespecified early stopping criteria for a low probability of efficacy. Of 343 patients in the TXA-127 trial (226 [65.9%] aged 31-64 years, 200 [58.3%] men, 225 [65.6%] White, and 274 [79.9%] not Hispanic), 170 received TXA-127 and 173 received placebo. Of 290 patients in the TRV-027 trial (199 [68.6%] aged 31-64 years, 168 [57.9%] men, 195 [67.2%] White, and 225 [77.6%] not Hispanic), 145 received TRV-027 and 145 received placebo. Compared with placebo, both TXA-127 (unadjusted mean difference, -2.3 [95% CrI, -4.8 to 0.2]; adjusted OR, 0.88 [95% CrI, 0.59 to 1.30]) and TRV-027 (unadjusted mean difference, -2.4 [95% CrI, -5.1 to 0.3]; adjusted OR, 0.74 [95% CrI, 0.48 to 1.13]) resulted in no difference in oxygen-free days. In the TXA-127 trial, 28-day all-cause mortality occurred in 22 of 163 patients (13.5%) in the TXA-127 group vs 22 of 166 patients (13.3%) in the placebo group (adjusted OR, 0.83 [95% CrI, 0.41 to 1.66]). In the TRV-027 trial, 28-day all-cause mortality occurred in 29 of 141 patients (20.6%) in the TRV-027 group vs 18 of 140 patients (12.9%) in the placebo group (adjusted OR, 1.52 [95% CrI, 0.75 to 3.08]). The frequency of the safety outcomes was similar with either TXA-127 or TRV-027 vs placebo. Conclusions and Relevance: In adults with severe COVID-19, RAS modulation (TXA-127 or TRV-027) did not improve oxygen-free days vs placebo. These results do not support the hypotheses that pharmacological interventions that selectively block the angiotensin II type 1 receptor or increase angiotensin (1-7) improve outcomes for patients with severe COVID-19. Trial Registration: ClinicalTrials.gov Identifier: NCT04924660.


Subject(s)
COVID-19 , Receptor, Angiotensin, Type 1 , Renin-Angiotensin System , Vasodilator Agents , Adult , Female , Humans , Male , Middle Aged , Angiotensin II/metabolism , Angiotensins/administration & dosage , Angiotensins/therapeutic use , COVID-19/complications , COVID-19/mortality , COVID-19/physiopathology , COVID-19/therapy , Hypoxia/drug therapy , Hypoxia/etiology , Hypoxia/mortality , Infusions, Intravenous , Ligands , Oligopeptides/administration & dosage , Oligopeptides/therapeutic use , Randomized Controlled Trials as Topic , Receptor, Angiotensin, Type 1/administration & dosage , Receptor, Angiotensin, Type 1/therapeutic use , Renin-Angiotensin System/drug effects , SARS-CoV-2 , Vasodilator Agents/administration & dosage , Vasodilator Agents/therapeutic use
15.
BMC Pharmacol Toxicol ; 24(1): 24, 2023 04 14.
Article in English | MEDLINE | ID: covidwho-2294889

ABSTRACT

BACKGROUND: Renin-angiotensin-aldosterone system (RAAS) is hypothesized to be in the center of COVID pathophysiology as the angiotensin converting enzyme 2 (ACE2) represents the main entrance of the virus, thus there is a need to address the effect of chronic use of RAAS blockers, as in case of treatment of cardiovascular diseases, on the expression of ACE2. Accordingly, this study aimed to clarify the effect of ACE inhibitors (ACEIs) and angiotensin-receptor blockers (ARBs) on ACE2 and to assess the correlation between ACE2 and several anthropometric and clinic-pathological factors. METHODS: A total of 40 healthy controls and 60 Egyptian patients suffering from chronic cardiovascular diseases were enrolled in this study. Patients were divided into 40 patients treated with ACEIs and 20 patients treated with ARBs. Serum ACE2 levels were assessed by ELISA. RESULTS: Assessment of serum ACE2 level in different groups showed a significant difference between ACEIs and healthy groups and ACEIs and ARBs group, while there was no difference between ARBs and healthy. Multivariate analysis using ACE2 level as constant and age, female sex, ACEIs use and myocardial infarction (MI) showed that there was a significant effect of female sex and ACEIs use on ACE2 level with no effect of age, MI and diabetes. CONCLUSION: ACE2 levels varied between ACEIs and ARBs. It tends to be lower in ACEIs group and there is a strong positive association between ACE2 level and the female sex. This needs to be considered in Future studies to further understand the relationship between gender, sex hormones and ACE2 level. TRIAL REGISTRATION: Retrospectively registered ClinicalTrials.gov ID: NCT05418361 (June 2022).


Subject(s)
COVID-19 , Myocardial Infarction , Humans , Female , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Renin , Angiotensins , Angiotensin-Converting Enzyme 2/pharmacology , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Renin-Angiotensin System , Myocardial Infarction/chemically induced
16.
Herz ; 48(3): 206-211, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2294530

ABSTRACT

The COVID-19 pandemic led to an enormous burden on healthcare systems worldwide. Causal therapy is still in its infancy. Contrary to initial views that the use of angiotensin-converting enzyme inhibitors (ACEi)/angiotensin II receptor blockers (ARBs) may increase the risk for a deleterious disease course, it has been shown that these agents may actually be beneficial for patients affected by COVID-19. In this article, we provide an overview of the three most commonly used classes of drugs in cardiovascular disease (ACEi/ARB, statins, beta-blockers) and their potential role in COVID-19 therapy. More results from randomized clinical trials are necessary to identify patients that can benefit most from the use of the respective drugs.


Subject(s)
COVID-19 , Cardiovascular Agents , Hypertension , Humans , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Renin-Angiotensin System , Angiotensin Receptor Antagonists/therapeutic use , Pandemics , Cardiovascular Agents/pharmacology , Cardiovascular Agents/therapeutic use , Hypertension/drug therapy
17.
Int J Mol Sci ; 24(7)2023 Apr 01.
Article in English | MEDLINE | ID: covidwho-2296742

ABSTRACT

As emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants (Omicron) continue to outpace and negate combinatorial vaccines and monoclonal antibody therapies targeting the spike protein (S) receptor binding domain (RBD), the appetite for developing similar COVID-19 treatments has significantly diminished, with the attention of the scientific community switching to long COVID treatments. However, treatments that reduce the risk of "post-COVID-19 syndrome" and associated sequelae remain in their infancy, particularly as no established criteria for diagnosis currently exist. Thus, alternative therapies that reduce infection and prevent the broad range of symptoms associated with 'post-COVID-19 syndrome' require investigation. This review begins with an overview of the parasitic-diarylamidine connection, followed by the renin-angiotensin system (RAS) and associated angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSSR2) involved in SARS-CoV-2 infection. Subsequently, the ability of diarylamidines to inhibit S-protein binding and various membrane serine proteases associated with SARS-CoV-2 and parasitic infections are discussed. Finally, the roles of diarylamidines (primarily DIZE) in vaccine efficacy, epigenetics, and the potential amelioration of long COVID sequelae are highlighted.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/metabolism , Post-Acute COVID-19 Syndrome , Peptidyl-Dipeptidase A/metabolism , Renin-Angiotensin System
20.
J Headache Pain ; 21(1): 38, 2020 Apr 25.
Article in English | MEDLINE | ID: covidwho-2270138

ABSTRACT

The world is currently dominated by the Corona Virus Disease 2019 (COVID-19) pandemic. Besides the obvious concerns about limitation of virus spread and providing the best possible care to infected patients, a concomitant concern has now arisen in view of a putative link between the use of certain drugs, such as Renin-Angiotensin System (RAS) inhibitors and ibuprofen, and an increased risk for COVID-19 infection. We here discuss this concern in relation to headache treatment and conclude that, based on current evidence, there is no reason to abandon treatment of headache patients with RAS inhibitors or ibuprofen.


Subject(s)
Angiotensin Receptor Antagonists/adverse effects , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Coronavirus Infections/pathology , Headache/drug therapy , Ibuprofen/adverse effects , Pneumonia, Viral/pathology , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Betacoronavirus , COVID-19 , Humans , Ibuprofen/therapeutic use , Pandemics , Peptidyl-Dipeptidase A/metabolism , Renin-Angiotensin System , Risk Factors , SARS-CoV-2 , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL